
Molecular Docking Study of Some Nucleoside Analogs 
against Main Protease of SARS-CoV-2

SARS-CoV-2 (Severe Acute Respiratory Syndrome Co-
rona Virus 2) or corona virus disease 2019 (COVID-19)

was reported from Wuhan city of China in December 2019 
and the viral infection has been spreading rapidly around 
the world thereby making serious problems to the public 
health.[1] The World Health Organization (WHO), on March 
11, 2020, recognized the disease as a global pandemic 
due to risingconcern about its fast spreading andcapac-
ity to transmit fromhuman to human.[2] Like SARS-CoV, 
SARS-CoV-2 or COVID-19 belongs to the β genus of sin-
gle strand enveloped RNA virus (family of Coronaviridae), 
which is responsible for acute lung injury accompanied 
by acute respiratory distress syndrome.[3] Early scientific 
investigations have shown that the entry of SARS-CoV as 
well as SARS-CoV-2 into the host cell occurs through the 

binding of the viral envelope-anchored spike protein with 
the host receptor ACE2 (angiontensin-converting enzyme 
2), thereby causing the infection in the host.[4] There is still 
no vaccine or definite therapeutic agents for the treatment 
of the infection caused by SARS-CoV-2.[5] Several antiviral 
and antimalarial drugs, such as Favipiravir (Influenza), Rib-
avirin (RSV infection and hepatitis C infection), Nelfinavir 
(HIV infection), Lopinavir/ritonavir (HIV infection), remde-
sivir (Hepatitis Cand Sars-CoV-2 infection), Umifenoviror 
Arbidol (Influenza), Chloroquine, and Hydroxychloroquine 
(malaria), have been used for the preliminary treatment 
of COVID-19.[6-11] Recently, a combination of three drugs, 
Lopinavir, Oseltamivir, and Ritonavirhas been formulated as 
a therapeutic measure to manage the virulence to a great 
extent in COVID-19patients (The Scientist, February 3 2020, 
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https://www.the-scientist.com/news-opinion/flu-andan-
ti-hiv-drugs-show-efficacy-against-coronavirus-67052). 
However, these antiviral or antimalarial drugs have some 
limitations for the treatment of COVID-19. More over, so far, 
there is no specific drug against COVID-19approved by the 
US Food and Drug Administration Agency.[12,13] There fore,-
given the global pandemic situation, the world is in need of 
highly efficient, minimal side effect, inexpensive, and read-
ily available drugs against COVID-19. After the outburst of 
COVID-19, different research groups have been continu-
ously working in designing and formulating antiviral drugs 
and vaccine to ascertain the therapeutic strategies for 
COVID-19.[14-22] Many of these research groups have report-
ed the binding affinity of different natural products, fungal 
secondary metabolites, FDA approved antiviral or antima-
larial drugs, and food supplements, among others, toward 
the main protease (6LU7) of COVID-19 through Molecular 
Docking approach.[22-36] On the other hand, nucleoside an-
alogs are, in recent times, found as a backbone of many 
drugs for the treatment of infection diseases caused by HIV, 
hepatitis B or C viruses, and herpes viruses.[37,38] Interesting-
ly, biological activity as well as the chemical and physical 
properties of nucleoside analog can be tuned remarkably 
by simple alteration of the sugar moiety of nucleoside with 
different substituent and heteroatom, among others.[39]

Moreover, the nucleoside analogs usually show antiviral ac-
tivities by inhibiting the viral replication through theblock-
age of cellular division or impairment of DNA/RNA synthe-
sis or inhibition of cellular or viral enzymes activity.[40,41] The 
nucleoside analogs Telbivudine (hepatitis B inhibiotor), 
Entecavir (HIV/ AIDS and Hepatitis B inhibitor), Clevudine 
(Hepatitis B inhibitor), Zalcitabine (reverse-transcriptase in-
hibitor), Taribavirin (prodrug of Ribavirin), Stavudine (HIV/
AIDS inhibitors), Lamivudine (first-generation nucleoside 
reverse transcriptase inhibitor), Cordycepin (RNA synthesis 
inhibitor), and Cordycepin Triphosphate (polyadenylation 
inhibitors, antineoplastic, antioxidant, and anti-inflamma-
tory agent) have been used in thetreatment ofmany viral 
diseases.[42-52] In recent times, bioinformatics have provid-
ed an alternative and innovative technique to combat this 
problemof the design and manufacture of new drug mol-
ecule for specific diseases.[53] Molecular docking study pro-
vides an insight into the different types of intermolecular 
interactions between a target protein and its ligand in a 
three dimensional space; therefore, this method serves as 
a simple and alternative way in the process of designing, 
evaluating, and comparing new drugs.[54] Thus, in this arti-
cle,an attempt has been made tostudy the binding affini-
ties as well as protein-ligand interaction of nine nucleoside 
analogsagainst the main protease (6LU7) ofSARS-CoV-2.

Methods

Preparation of Protein
Crystal structures ofthemain protease (Mpr°) of SARS-CoV-2 
or COVID-19 with PDB ID: 6LU7wasretrieved through Pro-
tein Data Bank (http://www.rcsb.org/).In order to prepare 
the receptor protein input files, Graphical User Interface 
program “Auto Dock Tools (ADT) 1.5.6” from Molecular 
Graphics Laboratory developed by Scripps Research Insti-
tute wasused.[55] In a typical receptor protein preparation 
for docking study, input file was generatedby taking the 
specific chain of the protein (Chain A) and removing wa-
ter molecules, ions, ligands, and subunits from the original 
structure file. The receptor protein input.pdbqt filewaspre-
pared by addingpolar hydrogen atoms and Kollman united 
atom charges into the receptor PDB file.[56]

Preparation of Ligand
The three dimensional structure of the nucleoside ana-
logs, includingTelbivudine (PubChem CID: 159269), Ente-
cavir (PubChem CID: 135398508), Clevudine (PubChem 
CID: 73115), Zalcitabine (PubChem CID: 24066), Taribavirin 
(PubChem CID: 451448), Stavudine (PubChem CID: 18283), 
Lamivudine (PubChem CID: 60825), cordycepin (PubChem 
CID: 6303), and cordycepin triphosphate (PubChem CID: 
65562), were downloaded in.sdf format from PubChem 
(http://pubchem.ncbi.nlm.nih.gov/) database and depict-
ed in Figure 1. The 3D structures in.sdf format of nucleo-
side analogs were converted to standard.pdb file format 
using online SMILES translator (https://cactus.nci.nih.gov/
translate/) and the input.pdbqt file was generated using 
ADT. Since the nucleoside analog drugswere non-peptides, 
Gasteiger charge was assigned and non-polar hydrogens 
were merged.

Docking Study
All docking simulations were performedin AutoDock Vina 
programme 1.1.2 developed by Scripps Research institute 
andresults of the docking study and intermolecular interac-
tions between the receptors and nucleoside analogs were 
analyzed using BIOVIA Discovery Studio 2020 (DS) version 
20.1.0.0 (Dassault Systèmes BIOVIA, Discovery Studio Mod-
eling Environment, Release 2017, San Diego: Dassault Sys-
tèmes, 2016) and Edupymol version 1.7.4.4.[57,58] In a typical 
docking simulation, three dimensional affinity (grid) maps 
and electrostatic grid boxes of dimension 50×50×50 Å 
grid points and grid center (X, Y, Z) of −26.283, 12.599, and 
58.966 with a spacing of 1.00 Åwere generated to cover the 
entire active site of the receptor protein. Lamarckian genet-
ic algorithm and a standard protocol with default setting 
of other run parameters were used for the docking simula-
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tion. The predicted inhibitory constant (pKi) was calculated 
using the following standard ized equation.[59]

pKi=10[Binding Energy Score /1.336]

Results and Discussion
According to WHO report, till 4th August 2020, a total num-
ber of 18,603,263 people have been infected with COVID-19 
across the world and over 701253 people have lost their 
lives (Worldometer, Last updated: August 5th, 2020,https://
www.worldometers.info/coronavirus). Till date, many coun-
tries are trying to develop a vaccine or antiviral drug forthe 
effective treatment ofCOVID-19.[5] However, many research 
studies have shown that the existing FDA approved drugs, 
such as Chloroquine, Hydroxychloroqunie (antimalarial 
drug), Leponavir, Ritonavir, Darunavir, Favipiravir (approved 
drug for HIV infection), Remdesivir, Ribavirin, Galidesivir 
(approved drug for Ebola virus infection), and Arbidol (in-
fluenza antiviral drug), are effective for the treatment of 
COVID-19.[6-11] Recent studies on SARS-CoV-2 have shown 
that the main protease (Mpr°) is highly conserved across the 
coronavirus family and that they are mainly responsible for 
viral replication.[60] Moreover, the crystal structure of Mpr° 
(6LU7) of SARS-CoV-2 in complex with the inhibitor ligand 

N3 have shown that the inhibitor ligand (N3) binds to the 
Mpr° of SARS-CoV-2 through Cys145-His41catalytic dyad 
present at the interface between domain I and domain II on 
the active site of Mpr° (6LU7), similar to SARS-CoV (Fig. 2).[61] 
There fore, the discovery of prominent and potentially ac-
tive ther apeutic agents that could inhibit the Mpr° is a dire 
need of the situation to combat the COVID-19 pandemic. 
Herein, in this research work, we studied the binding af-
finities and inhibitory potential of nine nucleoside analog 
antiviral agents against the main protease (6LU7) of SARS-
CoV-2 through molecular docking simulation by taking the 
blind docking calculations i.e., covering the entire protein 
surface as the binding pocket in order to avoid sampling 
bias. The binding energies, types of interactions with pos-
sible target amino acid residues, and predicted inhibitory 
constant (pKi) are depicted in Table 1. The detailed analy-
sis of binding affinity, intermolecular protein-ligand inter-

Figure 1. Structure ofthenucleoside analog antiviral drugs: (a) Tel-
bivudine, (b) Entecavir, (c) Clevudine, (d) Zalcitabine, (e) Taribavirin, 
(f) Stavudine, (g) Lamivudine, (h) Cordycepin and (I) Cordycepintri-
phosphate.

Figure 2. Structure of the Mpr° of SARS-Cov-2 (Chain A) with domain 
I, II, and III.
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Table 1. Summary of docking of nucleoside analog drugs against Main protease of SARS-CoV-2 (6LU7) with their respective binding energy 
(ΔG), predicted inhibitory constant (pKi), interacting amino acid residues and types of interactions

Nuceloside analogs: Binding Energy Predicted inhibitory Amino Acid residues Types of interactions
  (ΔG, Kcal/mole) constant (pKi) µM

Telbivudine -6.5 7.7 Leu141, Gly143, Ser144, H-bonding
    Cys145 and His163
    His41 Pi (π) donor H bond
    Met49, Phe140, Asn142, Van der walls
    His164, Met165, Glu166
    and His172
Entecavir -6.8 6.1 Thr26, Leu141 and Glu166 H-bonding
    Cys145 Pi(π)-alkyl 
    Thr25, leu27, His41, Met49, Van der walls
    Phe140, Asn142, Gly143,
    Ser144, Met165, His172
    and Gln189
Clevudine -6.8 6.1 Phe140, Leu141, Ser144 and H-bonding
    Cys145 
    His41 Pi(π)-sigma
    His164 Halogen (F) bond
    Met49, Asn142, Gly143, Van der walls
    His163, Met165, Glu166
    and Gln189
Zalcitabine -5.8 13.0 Leu141, Ser144, His163 and H-bonding
    Glu166 
    Cys145 Pi(π)- alkyl
    Phe140, Asn142, Gly143, Van der walls
    His164, Met165, His172
    and Gln189
Taribavirin -6.1 10.4 Asn142, Ser144 and Glu166 H-bonding
    Cys145 Pi(π)- alkyl
    His41, Met49, Phe140, Van der walls
    Leu141, Gly143, His163,
    his164, Met165, Asp187,
    Arg188 and Gln189
Stavudine -6.5 7.7 Gly143, Ser144, Cys145 H-bonding
    and His163
    His41 and Cys145 Pi(π)- alkyl
    Leu27, Met49, Phe140, Van der walls
    Leu141, Asn142, His164,
    Met165, Glu166 and His172
Lamivudine -5.7 14.0 Phe140, Ser144, Cys145, H-bonding
    His163, His164 and Glu166
    Cys145 Pi(π)- alkyl
    Met49, His41, Leu141, Van der walls
    Asn142, Gly143, Met165
    and His172
Cordycepin -6.5 7.7 Ser144 Cys145 H-bonding
    Met165 Pi(π)- alkyl
    His41 Pi(π)- Pi(π) T shaped
    Leu141, Asn142, Gly143, Van der walls
    his163, His164, Glu166,
    Asp187, Arg188 and Gln189
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actions, and possible amino acid residue for each type of 
proteins with the studied ligand are given below:

Analysis of Docking Result
The docking results of all the nine nucleoside molecules 
against the main protease of SARS-CoV-2 show that drug 
molecules binds significantly with the target protein at the 
interface between domain I and domain II on the active site 
of Mpr° (6LU7) of SARS-CoV-2. The interaction of Telbivudine 
with the main protease show that the molecule interacts 
with the protein 6LU7 through five hydrogen bonds, with 
a binding energy (ΔG)of−6.5 Kcal/mole (Fig. 3). These hy-
drogen bonds are formed between: C=O group of residue 
Leu141 and NH (3) proton of pyrimidine ring at a distance 
of 2.54Å; NH group of residue Gly143 and C=O (2) of pyrim-
idine ring at a distance of 2.25Å; NH group and OH group 
of residue Ser144 and C=O (2) and NH (3) group of pyrimide 
ring at a distanceof2.30Å and 2.21Å; NH2 and SH group of 
residue Cys145 and C=O (2) group of pyrimidine ring and O 
(1) atom of tetrahydrofuran ring at a distance of 2.20Å and 

3.48Å; and NH(imidazole) group of residue His163 and C=O 
(4) of pyrimidine ring at a distance of 2.07Å. Other types of 
interactions such as π-donor hydrogen bonding between 
the residue His41 and Telbivudine and van der walls inter-
actions between Telbivudine and residues Met49, Phe140, 
Asn142, His164, Met165, Glu166, and His172 have also 
been observed.

The docking of Entecavir with the main protease of SARS-
CoV-2 have shown that the molecule interacts with the 
protein at the interface between domain I and domain II 
on the active site of the protein, with a binding energy (ΔG)
of−6.8 Kcal/mole. The major interactions are characterized 
by three hydrogen bonds between: OH (4) group of cyclo-
pentane ring of Entecavir and C=O group of residue Thr26 
at a distanceof2.62Å; NH2(2) group of purine ring of Enteca-
vir and C=O group of residue Leu141 at a distanceof2.00Å; 
and C=O (6) group of purine ring of Entecavir and residue 
Glu166 at a distanceof2.19Å (Fig. 4). Apart from the con-
ventional hydrogen bonding, some π-alkyl (π-electron of 

Table 1. CONT.

Nuceloside analogs: Binding Energy Predicted inhibitory Amino Acid residues Types of interactions
  (ΔG, Kcal/mole) constant (pKi) µM

Cordycepin triphosphate -6.9 5.7 His41, Cys145, Asp187 H-bonding
    His41 Pi(π)-Pi(π) T shaped
    Met49, Met165 Pi(π)-alkyl
    Thr24. Thr25, Thr26, Leu27, Van der walls
    Tyr54, Asn142, Gly143,
    Ser144, His163, His164,
    Glu166, Arg188, Gln189

Figure 3. Telbivudine docked with Mpr° (6LU7) of SARS-CoV-2: (a) Best binding mode of Telbivudine in the pocket of protein (Telbivudine as 
green and red stick), (b) Amino acid residues involved in hydrogen bonding interaction (green dash line represents H-bonding) and (c) Binding 
interaction (2D) of Telbivudine with amino acid residues of protein 6LU7 (green dash line represents H-bonding).

a b c
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purine ring of Entecavir and alkyl group of residue Cys145) 
and van der walls interactions (between the drug Entecavir 
and residues Thr25, Leu27, His41, Met49, Phe140, Asn142, 
Gly143, Ser144, met165, his172, and Gln189) were ob-
served. An unfavorable donor-donor interaction between 
the residue His163 and NH2 (2) of purine ring of Entecavir 
has also been found.

After the successful docking of Clevudine against the main 
protease of SARS-CoV-2, the result shows that Clevudine-
fits inside the core pocket region at the interface between 
domain I and domain II on the active site of the protein, 
with a binding energy (ΔG)of−6.8 Kcal/mole. Clevudine 
interacts with the target protein by the formation of four 
prominent hydrogen bonds and these hydrogen bonds are 
formed between: C=O group of residue Phe140 and OH (4) 
group of tetrahydofuran ring of drug clevudine at a dis-
tance of 2.54Å; C=O group of residue Leu141 and H atom 
of CH2OH (5) group of clevudine at a distance of 2.31Å; 
NH2 and OH group of residue Ser144 and O and H atom of 
CH2OH (5) group of clevudine at a distance of 2.17Å and 
2.48Å, respectively; and NH and SH group of Cys145 and 
O atom of CH2OH group and F (3) atom of tetrahydrofuran 
ring of clevudine at a distance of 2.54Å and 3.68Å, respec-
tively (Fig. 5). Other types of interactions, such as π-sigma 
(between the π-electron of residue His41 and sigma elec-
tron of CH3 group of pyrimidine ring), Halogen (F) bond 
(between the F (3) atom of Clevudineand residue His163) 
and some van der walls interactions (between the resi-
dues Met49, Asn142, Gly143, His163, Met165, Glu166, and 
Gln189 and Clevudine) have also been observed.

Results obtained by the docking of Zalcitabine against the 

main protease of SARS-CoV-2 show the binding of Zalcit-
abine in the core pocket region at the interface between 
domain I and domain II of the main protease, with abind-
ing affinity (ΔG)of−5.8 Kcal/mole. The major interaction 
between Zalcitabine and protein (6LU7) are characterized 
by four hydrogen bonds. The first two hydrogen bonds are 
formed by C=O group of residue Leu141 and OH group 
of residue Ser144 with NH2 group attached to pyrimidine 
ring of Zalcitabine at a distance of 2.22Å and 2.52Å, respec-
tively. The other two hydrogen bonds are formed between 
NH (imidazole ring) of residue His163 and C=O(2) group 
attached to pyrimidine ring at a distance of 2.16Å and NH 
group of residue Glu166 and O(1) of tetrahydrofuran ring at 
a distance of 1.91Å (Fig. 6). The amino acid residue Cys145 
was found to interact with Zalcitabine through π-alkyl in-
teraction. Moreover, some van der walls interactions be-
tween Zalcitabine and residues Phe140, Asn142, Gly143, 
His164, Met165, His172, and Gln189 have been observed.

The results obtained by docking Taribavirin against the-
main protease of SARS-CoV-2 show that the drug molecule 
fits inside the core pocket region at the interface between 
domain I and domain II on the catalytically active site of 
main protein, with binding affinity (ΔG)of−6.1 Kcal/mole. 
Taribavirin forms three hydrogen bonds with the target 
protein. The first hydrogen bond exists between C=O group 
of residue Asn142 and OH (4) attached to tetrahydrofuran 
ring at a distance of 2.96Å. The second and third hydrogen 
bonds are formed by the NH group of residue Ser144 and 
NH group of residue Glu 166 with CH2OH (5) group and OH 
(3) group attached to tetrahydrofuran ring at a distance 
of 2.21Å and 2.26Å, respectively (Fig. 7). Apart fromthehy-

Figure 4. Entecavir docked with Mpr° (6LU7) of SARS-CoV-2: (a) Best binding mode of Entecavir in the pocket of protein (Entecavir as green 
and red stick), (b) Amino acid residues involved in hydrogen bonding interaction (green dash line represents H-bonding) and (c) Binding in-
teraction (2D) of Entecvir with amino acid residues of protein 6LU7 (green dash line and red dash line represents H-bonding and unfavorable 
donor-donor interaction, respectively)

a b c
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drogen bonding interactions, π-alkyl (alkyl group of cys-
145 and π-electron of triazole ring) interaction and some 
van der walls interaction between Taribavirin and residues 
His41, Met49, Phe140, Leu141, gly143, his163, His 164, 
Met165, Asp187, Arg188, and Gln189 were also observed.

The docking result of Stavudine against the main protease 
of SARS-CoV-2 showsthat Stavudine occupies the space 
at the interface between domain I and domain II on the 
catalytically active site ofthemain protease and interacts 
with the target protein by four major hydrogen bonding, 
with a binding energy (ΔG)of−6.5 Kcal/mole. Interestingly, 

the first three hydrogen bonds are formed by NH group of 
residues Gly143, Ser144, and Cys145 with C=O(2) group 
attached to the pyrimidine ring of Stavudine at a distance 
of 2.54Å, 2.12Å, and 2.34Å, respectively. The fourth hydro-
gen bonding exists between NH (imidazole ring) of residue 
His163 and C=O(4) group attached to pyrimidine ring at a 
distance of 2.07Å (Fig. 8). His41 and Cys145 forms π-alkyl in-
teraction with the Stavudine molecule. The residues Leu27, 
Met49, Phe140, Leu141, Asn142, His164, Met165, Glu166, 
and His172 interact with Stavudine through van der Waals 
interactions.

Figure 6. Zalcitabine docked with Mpr° (6LU7) of SARS-CoV-2: (a) Best binding mode of Zalcitabine in the pocket of protein (Zalcitabine as 
green and red stick), (b) Amino acid residues involved in hydrogen bonding interaction (green dash line represents H-bonding), and (c) Bind-
ing interaction (2D) of Zalcitabine with amino acid residues of protein 6LU7 (green dash and pink dash line represents H-bond and Pi-alkyl 
interaction, respectively)

a b c

Figure 5. Clevudine docked with Mpr° (6LU7) of SARS-CoV-2: (a) Best binding mode of Clevudine in the pocket of protein (Clevudine as green 
and red stick), (b) Amino acid residues involved in hydrogen bonding interaction (green dash line represents H-bonding), and (c) Binding in-
teraction (2D) of Clevudine with amino acid residues of protein 6LU7 (green dash, Purple dash, and blue dash line represents H-bond, Pi-sigma, 
and halogen bond, respectively)

a b c
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Analysis of the docking result of Lamivudine with the main 
protease of SARS-CoV-2 revealed that Lamivudine interacts 
with the protein at the interface between domain I and do-
main II on the active catalytic side, with a binding affinity 
(ΔG) of−5.7 Kcal/mole. Seven major hydrogen bonding in-
teractions exist between the protein and Lamivudine. These 
hydrogen bonding are found to exist between: C=O group 
of Phe140 and COOH group of residue Glu166 with NH2 (4) 
attached to pyrimidine ring of Lamivudine at a distance of 
2.39Å and 2.65Å, respectively; NH2 group of Ser144 with 
C=O (2) group attached to pyrimidine ring at a distance of 

2.73Å; NH2 and SH group of residue Cys145 with C=O (2) 
attached to pyrimidine ring and O(1) of tetrahydronfuran 
ring at a distance of 2.75Å, 3.23Å, and 3.35Å, respectively; 
NH (imidazole ring) of residue His163 with N(3) group of py-
rimidine ring at a distance of 2.27Å; and C=O group of resi-
due His164 with CH2OH group attached to tetrahydrofuran 
ring at a distance of 2.34Å (Fig. 9). Apart from these hydro-
gen bonding interactions, residue Cys145 interacts with the 
drug through π-alkyl interaction and residues His41, Met49, 
Leu141, Asn142, Gly143, Met165, and His172 interacts with 
Lamivudine through van der walls interactions.

Figure 7. Taribavirin docked with Mpr° (6LU7) of SARS-CoV-2: (a) Best binding mode of Taribavirin in the pocket of protein (Taribavirin as green 
and red stick), (b) Amino acid residues involved in hydrogen bonding interaction (green dash line represents H-bonding), and (c) Binding 
interaction (2D) of Taribavirin with amino acid residues of protein 6LU7 (green dash and pink dash line represents H-bondand Pi-alkyl interac-
tion, respectively).

a b c

Figure 8. Stavudine docked with Mpr° (6LU7) of SARS-CoV-2: (a) Best binding mode of Stavudine in the pocket of protein (Stavudine as green 
and red stick), (b) Amino acid residues involved in hydrogen bonding interaction (green dash line represents H-bonding), and (c) Binding 
interaction (2D) of Stavudine with amino acid residues of protein 6LU7 (green dash and pink dash line represents H-bond and Pi-alkyl interac-
tion, respectively).

a b c
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The docking of Cordycepin with the main protease of 
SARS-CoV-2 revealed that Cordycepin interacts with the 
protein in the core pocket region of catalytically active site 
(interface between domain I and domain II), with a bind-
ing affinity (ΔG) of−6.5Kcal/mole. Furthermore, NH2 and 
OH group of residues Ser144 and SH group residue Cys145 
forms hydrogen bonds with CH2OH group attached to tet-
rahydrofuran ring at a distance of 2.17Å, 2.81Å, and 2.97Å, 
respectively (Fig. 10). Residue His41 forms π-π T shaped in-
teractions with the π electron of purine ring and residue 
Met165 forms π-alkyl interaction. The amino acid residues 
Leu141, Asn142, Gly143, His163, His164, Glu166, Asp187, 

Arg188, and Gln189 interacts with Cordycepin through van 
der walls interactions.

The docking of Cordycepin triphosphate against the main 
protease of SARS-CoV-2 showed significant interactions 
with the receptor protein in the catalytic pocket of protein 
6LU7, withabinding affinity (ΔG) of −6.9 Kcal/mole. Anal-
ysis of the docking of cordycepin triphosphate against 
protein 6LU7, the main protease (Mpr°) of SARS-COV-2, has 
shown that theyform favorable hydrogen bonding with 
the Cys145-His41 dyad of the main protease. Interesting-
ly, NH (imidazole ring) of residue His41 forms hydrogen 

a b c

Figure 9. Lamivudine docked with Mpr° (6LU7) of SARS-CoV-2: (a) Best binding mode of Lamivudine in the pocket of protein (Lamivudine as 
green and red stick), (b) Amino acid residues involved in hydrogen bonding interaction (green dash line represents H-bonding), and (c) Bind-
ing interaction (2D) of Lamivudine with amino acid residues of protein 6LU7 (green dash and pink dash line represents H-bond and Pi-alkyl 
interaction, respectively).

Figure 10. Cordycepin docked with Mpr° (6LU7) of SARS-CoV-2: (a) Best binding mode of Cordycepin in the pocket of protein (Cordycepin as 
green and red stick), (b) Amino acid residues involved in hydrogen bonding interaction (green dash line represents H-bonding), and (c) Bind-
ing interaction (2D) of Cordycepin with amino acid residues of protein 6LU7 (green dash, purple dash, and pink dash line represents H-bond, 
pi-pi T shaped. and Pi-alkyl interaction, respectively).

a b c



333EJMO

bond with one of the oxygen atom of the phosphate link-
age of cordycepin triphosphate at a distance of 2.45Å and 
SH group of residue Cys145 forms hydrogen bond with 
the oxygen atom at the phosphate (CH2O-P) linkage of 
the cordycepin triphosphate at a distance of 3.73Å. Also, 
there is another hydrogen bond interaction between car-
bonyl oxygen (C=O) of residue Asp187 and NH2(6) group 
of Purine moiety (Fig. 11) at a distance of 2.41Å. Apart from 
the conventional hydrogen bonding, Cordycepin triphos-
phate interacts with the protein 6LU7 through Pi (π)-Pi (π) T 
shaped interaction between residue His41 and pi (π) elec-
tron of purine ring at a distance of 4.24Å and 5.32Å, Pi (π)-al-
kyl (alkyl group of Met 49 and met165 with Pi (π)electron 
of purine ring) and van der walls interaction between the 
residues Thr24. Thr25, Thr26, Leu27, Tyr54, Asn142, Gly143, 
Ser144, His163, His164, Glu166, Arg188, and Gln189 and-
Cordycepin triphosphate.

Conclusion
In this study, an attempt has been made to examine the 
inhibitory potential of nine nucleoside analogs against 
the main protease of SARS-COV-2. Based on the present 
study, it can be concluded thatthenine nucleoside analogs 
investigatedcan interact with the important amino acid 
residues of the studied proteins (6LU7) at the interface 
between domain I and domain II of the catalytically active 
site of SARS-COV-2 main protease and can inhibit the main 
protease ofthisnovel coronavirus. The docking studies sug-
gest that the binding affinities (ΔG) of the nine nucleoside 
analogs against the main protease of SARS-CoV-2 are in 
the rangeof−5.7 Kcal/mole to −6.9 Kcal/mole andthatthe 
binding affinity of the nine nucleoside analogs follows the 

order:−6.9 Kcal/mole (cordycepin triphosphate)>−6.8 Kcal/
mole (Entecavir≈ Clevudine)>−6.5 Kcal/mole (Telbivu-
dine≈ Stavudine≈Cordycepin)>−6.1 Kcal/mole (Taribavi-
rin)>−5.8 Kcal/mole (Zalcitabine)>−5.7 Kcal/mole (Lamivu-
dine).Furthermore, invitro and invivo studies are required to 
transform these potential inhibitors as therapeutic agents 
in clinical trials.
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